Chapter 2

Nouvelles Techniques d’Extraction
de Chemins a I’Aide du

Fast-Marching

Résumé — Ce chapitre contient diverses améliorations de la méthode originale du
chapitre 1, valables aussi bien en 2D qu’en 3D.

Nous commengons par présenter en section 2.1 une extension au 3D de la méthode
classique. Nous détaillons en section 2.2 des méthodes pour accélerer I'extraction
de chemins et la rendre plus facile, en réduisant les interactions nécessaires. Nous
developpons une méthode pour extraire des chemins centrés dans des structures
tubulaires en section 2.3. En section 2.4 nous calculons des trajectoires pour des
objets en mouvement, en introduisant ’angle comme dimension supplémentaire au
probléeme. Finalement, nous expliquons 'introduction d’un facteur de récursivité
dans le Fast-Marching , afin d’extraire des chemins plus longs. Chaque technique
est illustrée par un exemple sur une image réelle ou de synthese.

Abstract — This chapter will detail various improvements and modification of the
original method of chapter 1 that are useful for image analysis in 2D as well as in
3D.

In section 2.1, we extend the method detailed in section 1.3 for 2D images to 3D. In
section 2.2 we give details about our techniques to make the path extraction scheme
faster and easier, by reducing the user interaction. In section 2.3 we develop a new
method to extract a path centered in a tubular structure. In section 2.4 we compute
trajectories for moving objects, introducing a degree of freedom on their angulation.
Finally, in section 2.5, we explain the introduction of a recursivity factor in the
Fast-Marching algorithm, which enables to extract longer paths. Synthetic and real
medical images are used to illustrate each contribution.

24 2 Path extraction techniques based on the Fast-Marching algorithm

2.1 3D Extension

We are interested in this section in finding a minimal curve in a 3D image. One
application that can motivate this problem is detailed in section 3.1. It can also have
many other applications. Our approach is to extend the minimal path method of
previous section to finding a path C(s) in a 3D image minimizing the energy:

/ P(C(s))ds (2.1)
Q

where Q = [0, L], L being the length of the curve. An important advantage of level-set
methods is to naturally extend to 3D. We first extend the Fast Marching method to
3D to compute the minimal action U. We then introduce different improvements for
finding the path of minimal action between two points in 3D. In the examples that
illustrate the approach, we see various ways of defining the potential P.

Similarly to previous section, the minimal action U is defined as

U(p) = inf {/QP(C(S))ds} (2.2)

Apo.p

where A, , is now the set of all 3D paths between py and p. Given a start point po,
in order to compute U we start from an initial infinitesimal front around py. The 2D
scheme equation (1.7) is extended to 3D, leading to the scheme

(max{u — U1 kv —Uis1,1,01)? +
(max{u — Ui’jflyk, u— Ui,j+1,ka 0})2 —+ (2.3)

(max{u — Ui,j,kfla u — Ui,j,k+17 0})2 = PiQ,j,k
giving the correct viscosity-solution u for U, ; . The algorithm which gives the order
of selection of the points in the image is detailed in table 2.1. It should be noted that
a generalization of this algorithm was recently introduced in [92].

Considering the neighbors of grid point (4, j, k) in 6-connexity, we study the so-
lution of the equation (2.3). We note {A;, Az}, {B1, B} and {Cy,C5} the three
couples of opposite neighbors such that we get the ordering Uas, < Ua,, U, < Up,,
Uec, < Ug,, and Us, < Up, < Ug,. To solve the equation, three different cases are
to be examined sequentially in table 2.2. We thus extend the Fast Marching method,
introduced in by Adalsteinsson and Sethian [2], and used by Cohen and Kimmel [34]
to our 3D problem.

2.2 Several minimal path extraction techniques

In this section, different minimal path extraction procedures are detailed. We present
new back-propagation techniques for speeding up extraction, a one end-point path
extraction method to reduce the need for interaction, and in next section, a centering
path extraction method adapted to the problem of tubular structures in images. The
methods presented in this section are valid in 2D as well as in 3D and this is an

2.2 Several minimal path extraction techniques 25

Algorithm for 3D Fast Marching
e Definition:
— Alive is the set of all grid points at which the action value has been
reached and will not be changed;

— Trial is the set of next grid points (6-connexity neighbors) to be exam-
ined and for which an estimate of U has been computed using equa-
tion 2.3;

— Far is the set of all other grid points, for which there is not yet an
estimate for U;

e Initialization:

— Alive set is confined to the starting point po, with U(pg) = 0;

— Trial is confined to the six neighbors p of po with initial value U(p) =
P(p);
— Far is the set of all other grid points p with U(p) = oo;

e Loop:
— Let (4min, Jmin, kmm) be the Trial point with the smallest action U;

— Move it from the Trial to the Alive set (i.e. U; is frozen);

minsJminsKmin
— For each neighbor (4, j, k) (6-connexity in 3D) of (imin, Jmin, kmin):
x If (4,7, k) is Far, add it to the Trial set and compute U using table
2.2;

« If (4,4, k) is Trial, recompute the action U; ; , and update it.

Table 2.1. Fast Marching algorithm

important contribution that can be useful for image analysis in general, for example
in radar applications [8], in road detection [117], or in finding shortest paths on
surfaces [86].

Examples in 2D are used to make the following ideas easier to understand. We also
illustrate the ideas of this section on two synthetic examples of 3D front propagation
in figures 2.1 and 2.2. Examples of minimal paths in 3D real images are presented in
chapter 3.

The minimal action map U computed according to the discretization scheme of
equation (2.2) is similar to convex, in the sense that its only local minimum is the
global minimum found at the front propagation start point pg where U(py) = 0.
The gradient of U is orthogonal to the propagating fronts since these are its level
sets. Therefore, the minimal action path between any point p and the start point
po is found by sliding back the map U until it converges to pg. It can be done with
a simple steepest gradient descent, with a predefined descent step, on the minimal
action map U, choosing

Prn+1 = Pn — step X VU (py,). (2.6)

More precise gradient descent methods like Runge-Kutta midpoint algorithm or Heun'’s

26 2 Path extraction techniques based on the Fast-Marching algorithm

Algorithm for 3D Up-Wind Scheme
1. Considering that we have u > Uc, > Up, > Ua,, the equation derived is

(u—=Uay)* + (u=Up,)* + (u—Uc,)* = P? (2.4)
Computing the discriminant A; of equation (2.4) we have two possibilities

e If Ay >0, u should be the largest solution of equation (2.4);

— If the hypothesis u > Uc, is wrong, go to 2;
— If this value is larger than Uc,, go to 4;

e If Ay < 0, at least one of the neighbors A1, By or (1, has an action too
large to influence the solution. It means that the hypothesis u > Uc,
is false. Go to 2;

2. Considering that we have u > Up, > Ua, and u < Ug, , the new equation
derived is
(U_UA1)2+(U_U51)2 :P2 (2‘5)

Computing the discriminant Ay of equation (2.5) we have two possibilities
e If Ay >0, u should be the largest solution of equation (2.5);

— If the hypothesis u > Up, is wrong, go to 3;
— If this value is larger than Ug,, go to 4;

e If Ay < 0, B; has an action too large to influence the solution. It means
that uw > Up, is false. Go to 3;

3. Considering that we have u < Up, and u > Ua,, we finally have u = U4, +P.
Go to 4;

4. Return u

Table 2.2. Solving locally the upwind scheme

method can be used for this path extraction. A simpler descent can be choosing
Pn+1 = MiN{neighbors of p,} U(p), but it gives an approximated path in the L; metric.
Such a descent has no more the property of being consistent. As an example, see in
figure 2.1 the computed minimal action map for a 3D Homogeneous medium defined
by P(i, j, k) = 1 ¥(i, j, k).

Figure 2.2 shows a front propagation an a synthetic binary example, based on a
spiral. We extract a path that goes from the interior of the spiral, and finds its way
out of it to the second end point outside the object.

2.2.1 Partial Front Propagation

An important issue concerning the back-propagation technique is to constrain the
computations to the necessary set of pixels for one path construction. Finding several
paths inside an image from the same seed point is an interesting task, but in case we
have two fixed extremities as input for the path construction, it is not necessary to
propagate the front on all the image domain, thus saving computing time. Figure 2.3
compares the sets of pixels visited using a classical front propagation, and a partial

2.2 Several minimal path extraction techniques 27

Figure 2.1. 3D visualization of an action map: these are the level sets of
the action obtained by propagating a front in a homogeneous medium (constant
Potential: V(z,y,z) € R® P(x,y,2) = ¢ > 0) , represented with different colors.
The domain is cubic, and the starting point for the wave equation is located at the
center of the cube. The iso-action surfaces are concentric spheres with the starting
point as center.

propagation on a Digital Subtracted angiography (DSA) image of the brain vessels.
It highlight the fact that the set of points visited is smaller when propagation is only
partial. We can see that there is no need to propagate further the points examined in
figure 2.3-right, the path found being exactly the same as in figure 2.3-middle where
front propagation is done on all the image domain. We used a potential P(x) =
|VG, * I(x)| + w, where [is the original image (5122 pixels, displayed in figure 2.3-
left), G, a Gaussian filter of variance 0 = 2, and w = 1 the weight of the model.
In figure 2.3-right, the partial front propagation has visited less than half the image.
This ratio depends mainly on the length of the path tracked.

2.2.2 Simultaneous Front Propagation

The idea is to propagate simultaneously a front from each end point pg and p;. Let
us consider the first grid point p where those front collide. Since during propagation
the action can only grow, propagation can be stopped at this step. Adjoining the
two paths, respectively between py and p, and p; and p, gives an approximation of
the exact minimal action path between pg and p;. Since p is a grid point, the exact
minimal path might not go through it, but in its neighborhood. Basically, there exists
a real point p*, which nearest neighbor on the Cartesian grid is p which belongs to
the minimal path. Therefore, the approximation done is sub-pixel and there is no
need to propagate further. This colliding fronts method is described in table 2.3.

28 2 Path extraction techniques based on the Fast-Marching algorithm

Figure 2.2. Front propagation in a synthetic 3D example: The left image is
a volume rendering of the synthetic dataset, a spiral image, with a very high value
(P(z,y,2) = c1 = 10*) in the spiral walls and a very low value in the background
(P(x,y,z) = ca = 1). We extract the minimal path between a starting point located
inside the spiral, and another one outside the spiral. The middle image represents
the level sets of the action, mapped on three orthogonal planes, using the same
color-map than in figure 2.1. The right image represents a transparent view of the
object and the extracted path obtained.

Algorithm
e Compute the minimal action maps Uy and U; to respectively pp and p; until
they have an Alive point p2 in common;
e Compute the minimal path between po and ps by back-propagation on Uy
from po;
e Compute the minimal path between p; and p by back-propagation on U;
from po;

e Join the two paths found.

Table 2.3. Minimal Path as intersection of two action maps

It has two interesting benefits for front propagation:

o It allows a parallel implementation of the algorithm, dedicating a processor to
each propagation;

e It decreases the number of pixels examined during a partial propagation. With
a potential defined by P = 1, the action map is the Euclidean distance.

— In 2D (figure 2.5), this number is divided by % =2;

— In 3D (figure 2.1), this number is divided by éiR]; =4.

Figure 2.4 compares the sets of pixels visited using a partial front propagation, as
explained in section 2.2.1, and a simultaneous propagation on a Digital Subtracted
angiography (DSA) image of the brain vessels. It highlight the fact that the set of

2.2 Several minimal path extraction techniques 29

Figure 2.3. Comparing classical and partial propagation: The left image is
the data set, used as potential to extract a path which stays inside a brain vessel of
a DSA image; the extremities of the path are located manually. The center image
is the action map obtained by propagating on the whole image domain. The right
image shows the action map resulting from a partial computation. The two paths
extracted are the same, due the minimality principle.

points visited is even smaller when propagation is done from both the extremities of
the path.

The potential used is P(x) = |I(x)—C|4+w, where [is the original image (256 x 256
pixels, displayed in figure 2.4-(a)), C' a constant term (mean value of the start and end
points gray levels), and w = 10 the weight of the model. In figure 2.4-(b), the partial
front propagation has visited up to 60% of the image. With a colliding fronts method,
only 30% of the image is visited (see figure 2.4-(c)), and the difference between both
paths found is sub-pixel (see figure 2.4-(d) where the paths superimposed on the data
do not differ).

The diagram in figure 2.5 represents the theoretical difference of domains visited
by the algorithm, for partial and simultaneous propagations.

2.2.3 Euclidean Path Length Computation

We have shown the ability of the front propagation techniques to compute the minimal
path between two fixed points. In some cases, only one point should be necessary, or
the needed user interaction for setting a second point is too tedious in a 3D image.
Here we derive a method that builds a path given only one end point and a maximum
path length.

As we explain below, we can compute simultaneously at each point the energy U
of the minimal path and its length. We choose as end point the first point for which
the length of the minimal path has reached a given value. Since the front propagates
faster along lower values of Potential, interesting paths are longer for a given value of
U.

The technique is similar to that of section 2.2.1, but the new condition will be to
stop propagation when the first path corresponding to a chosen Euclidean distance is
extracted. Since the front propagates in a tubular structure, all the points for which

30 2 Path extraction techniques based on the Fast-Marching algorithm

AS

Figure 2.4. Comparing partial and simultaneous propagation: The left
image is the data set, used as potential to extract a path in a vessel tree in a DSA
image; the extremities of the path are located manually. The center image is the
action map obtained by partial front propagating as explained in section 2.2.1. The
right image shows the action map resulting from a simultaneous propagation from
both extremities of the path. The second path extracted is a sub-pixel approxima-
tion of the first one, as detailed in the section.

the path length criterion is reached earlier in the process are located in the same area,
far from the start point. Therefore the first point for which the length is reached is
located in this area and is a valuable choice as endpoint.

Figure 2.6 represents the propagation of a front according to the potential shown
in figure 2.6-left, with the on-the-fly computation of the approximate Euclidean length
of the paths at each pixel crossed by the front. The propagation is done on the whole
image domain, and one can observe that the resulting map, in figure 2.6-right is
non-smoothed, and very difficult to analyze.

Figure 2.7 represents the same computation of the Euclidean path length than
in figure 2.6-left, but limited to the necessary set of pixels visited in order to ex-
tract the minimal path super-imposed on the three images (the method is detailed
in section 2.2.1). One can observe that the resulting map, in figure 2.6-right is non-
smoothed, but we can clearly visualize the level-sets of the Euclidean path length
computed at the same time.

2.3 Path centering in linear objects

The path is the set of locations that minimize the integral of the potential in equa-
tion (1.3). If the potential is constant in some areas, it will lead to the shortest
Euclidean path. The same thing happens when the potential does not vary much
inside a tubular shape. The minimal path extracted is often tangential to the edges,
and would not be tuned for a problem which may require a centered path. Figure 2.8
describes the practical problem we are facing using the classical wave equation model
of [34], in tube shaped structures where the potential is approximately homogeneous
inside the object.

2.3 Path centering in linear objects 31

Figure 2.5. Comparing the theoretical domains for extracting a minimal
path between two points in a homogeneous medium: The area labeled
zone 1 corresponds to the needed set of pixels visited with partial propagation.
The area labeled zone 2 corresponds to the needed set of pixels with simultaneous
propagation.

The general framework for obtaining a centered path is the following
e Segmentation : the first goal is to obtain the edges of the tubular region;

e Centered path : once we have this segmented region, we want to find a path
that is as much centered as possible in it. In order to attract the minimal path
to the center of the region, we use a distance map from the segmented edges.

In the following we are going to present our method, introduced in [42], detailing
each step and making comparisons with other existing techniques.

2.3.1 Segmentation step

In order to find the tubular structure, several approaches can be used. We can use
a balloon model [29] with a classical snake approach that inflates inside the object,
starting with the given end point. Or we can segment the object using its corre-
spondent level-sets implementation, as in [113] and like the bubbles in [172]. In fact,
this kind of region growing method can also be implemented using the Fast Marching
algorithm. This fast approximation has already been used for segmentation in [111].
This allows us to include the segmentation step in the same framework as our minimal
path finding: having searched for the minimal action path between two given points,
using a partial front propagation (see section 2.2.1), the algorithm provides different
sets of points:

e the points whose action is set and labeled Alive;
e the points not examined during the propagation and labeled Far;

e the points at the interface between Alive and Far points, whose actions are not
set, and labeled Trial.

32 2 Path extraction techniques based on the Fast-Marching algorithm

Figure 2.6. Computing the approximate Euclidean path length while
propagating on the whole image: using the left image as potential, the front is
propagated on the whole image domain. Middle image and right images represent
respectively the action map starting from the bottom of the vessel, and the Euclidean
path length computed at the same time.

This last category, the border of the visited points, is a contour in 2D and a
surface in 3D which defines a connected set of pixels or voxels. If the potential is a
lot higher along edges than it is inside the shape, the edges will act as an obstacle
to the propagation of the front. Therefore, the front propagation can be used as a
segmentation procedure, recovering the object shapes. In this case the Trial points
define a surface which can be described as a rough segmentation. Once the front has
reached the endpoint, we use the front itself to define the edges.

2.3.2 Centering the path

Having obtained this interface of Trial points, we now want the information of distance
to the edges. This information can be either used for a skeletonization, computing
the medial-axis transform, or used as a new snake energy, that constrains the path in
the center of the tubular shape.

In order to compute this distance, we can use a second front propagation proce-
dure. The edges ares stored in the min-heap data-structure (see [163] for details), and
this is a very fast re-initialization process to compute this distance. The potential
and the initial action for this second front propagation are defined as follows:

P(i,j)=1 V(i,7) inside the shape
P(i,j) =00 V(i,]) outside the shape

U(i,j) =0 V(i,7) € {Trial} points of section 2.3.1
U(i,j) = o0 elsewhere

Starting the front propagation from all the points stored in the min-heap data-
structure, we compute the distance map, said £, very quickly, visiting only the pixels
inside the tubular object.

2.3 Path centering in linear objects 33

\

Figure 2.7. Computing the approximate Euclidean path length while
propagating partially on the image domain: Left image is the potential. Mid-
dle image and right images represent respectively the action map starting from the
bottom of the vessel, and the Euclidean path length computed at the same time.

Our distance map £ is used to create a second potential P;. Choosing a value d to
be the minimum acceptable distance to the walls, we propose the following potential:

Py (x) = max (d — £(x);0)” (2.7)

This distance d is illustrated on figure 2.9. We use this potential (2.7) for a new
front propagation approach: P; weights the points in order to propagate faster a new
front in the center of the desired regions. This final propagation produces a path
centered inside the tubular structure in a very fast process.

2.3.3 Description of the method
The complete method is described in figure 2.10.

1. Segmentation: the first step is to compute the weighted distance map given the
start and end points. It is obtained by front propagation from the start to the
end point. Notice also that the end point can be determined automatically by
a length criterion as in section 2.2.3;

2. Segmentation: the second step is to consider the set of points which have same
minimal action as the endpoint. For this, we store the front position (set of trial
points) at the end of the first step.

3. Centering Potential : the third step is to compute the distance map &£ to the
boundary front inside the tubular region. For this we propagate inward the
front with a uniform potential P = 1. This gives the higher values towards the
center of the object.

4. Centered path : the fourth step is to find the minimal path between start and
end points relatively to the distance potential P; defined in (2.7) computed
from the previous step. This is obtained by applying again the minimal path

34 2 Path extraction techniques based on the Fast-Marching algorithm

- _-idedl path
— real path

Figure 2.8. Path extraction in a tube-like object: the path obtained using the
classical wave equation model is minimal according to the weighted metric, which
means that it is the shortest in the tube considered; the ideal path would stay in
the center of the object, as shown in the diagram.

technique. The front is now pushed to propagate faster in the center of the
object.

5. Centered path : the final step is to make back-propagation from the end point
using the last minimal action map.

Figure 2.9. Thresholding the distance map: The left image shows the level
sets of the distance to the object borders; The right image is the potential obtained
by applying a threshold to the distance in order to propagate faster in a region of
the tube, at a minimum distance to the borders, given as parameter.

Figure 2.10 explains the different steps of the path centering process.
An interesting improvement is that the value of the weight w can be automatically
set to a very low value:

e During the first propagation the regularity of the path is not important, and w
can be very small;

35

Propagating the front inward

[™
T
V)
\\\\\\\\\wis\&\\\\\\\\\\@\\\\\
Lk) ©
G
ey
D
D),
Wi
Ut/

> Level Sets

2nd solution
1st solution

P+w=1

Propagating the front outward

2.3 Path centering in linear objects

and is rapidly stopped transversally, allowing to compute
Defining a new potential according to equation (2.7) based

the second front propagates faster in the center of the vessel,

)

5 . |
S | -
8 . \\ \\\\\\\\ T
S | e iy
7 Y > h
m §§ £ §§ £
g 5 x\\\\\\@?%\\\\\m
T8 E Ui
g & KT
. 20 by
s U
W

4
s

walls is synthetic and leads to smooth paths even if w << 1 .
Figure 2.11 compares the result of the classical path extraction, and the centering

process detailed below, on a potential defined by a DSA image of the brain vessels.
In figure 2.11-middle is shown the result obtained using a potential based on the

image, where the shortest path is tangential to edges. But the front propagates only

along the vessel direction
the distance to the walls.

e During the final propagation the potential based on the distance to the object
on this distance map,

the envelope of the pixels visited during step 1; step3 is to propagate backward into
the object, computing the distance to its borders; step 4 is to use the distance as a

the medium between the two extremities of the path; step 2 is to consider and store
new penalty to propagate; step 5 is to backtrack the final centered path.

Figure 2.10. The complete path centering process: step 1 is propagation in

e During the second propagation, P’
at the distance d chosen. Due to the shape of the iso-action lines of the centered

minimal action shown in figure 2.11-right, the path avoids the edges and remains in

to highlight the result of the modification of the penalty according to the distance to
the center of the vessel.

The two paths are represented super-imposed on the data in figure 2.11-left, in order
the object.

36 2 Path extraction techniques based on the Fast-Marching algorithm

Figure 2.11. Path centering test on a 2D DSA image: Applying the process
detailed in figure 2.10, the two paths extracted are super-imposed on the data on
the left image; the middle image represents the level-sets of the action map with a
classical use of the Eikonal equation; the right image shows the corresponding result
with the centering strategy.

2.3.4 Comparison with other work

Another method to obtain a centered path would be to make a classical snake min-
imization on the centering potential P;, starting from the path obtained previously,
like it is done in the thesis [36]. But too much smoothing may lead to a wrong path.
For example, in the case of thin tubular structures, smoothing the path may lead it
outside the tubular structure. Also, the unpublished work presented in [36] details an
algorithm which is applied to a tubular object which is already manually segmented
by the user, whereas our method comprises both steps of segmentation and centering.

Another category of very similar centered line extraction technique is skeletoniza-
tion, and particularly the definition of the medial axis function of [15] which treats all
boundary pixels as point sources of a wave front. Considering that the Fast Marching
computes the Euclidean distance to an arbitrary set of points using a potential P = 1,
it can also be used for skeletonization.

However, the purpose of our application is to have a smooth line which always
stays inside the tubular object and which is far from the edges.

If one wishes to achieve this task with a skeletonization, like in [192], he will
need and rely on the results of post-processing techniques in order to obtain a unique
and smooth path inside this segmented object. Smoothing and removing undesirable
small parts of the skeleton can be done using techniques shown in [173]. The main
advantage of our approach is that it gives only one smooth and centered path in a
unique and fast process. Therefore, it cannot be replaced by a simple medial-axis
transform.

In [136], the authors extract first the surface of the colon, then compute a minimal
path on this surface and move this initial path to the center of the object by applying
a thinning algorithm to the object segmented and projecting the path on the resulting

2.4 Introducing the angle as a dimension 37

surface. The algorithm developed by [90] can be applied to their methods since it
computes the minimal path on a surface defined by a manifold. Although it seems to
produce a smooth centered line, the thinning algorithm is computationally inefficient,
compared to the speed of our algorithm that needs less than a minute on a classical
inexpensive computer (300MHz CPU).

In the different techniques quoted, the main difference with our method lies in the
fact that the object is manually segmented by the user. Our method comprises steps
of segmentation and path extraction, and achieves them in a very fast way. More than
a robust and fast method, we have developed a tool that is used for segmentation,
minimal path tracking, and even potential definition The main advantage of our
approach is that it comprises all those steps and gives only one smooth and centered
path in a unique and fast process.

2.4 Introducing the angle as a dimension

2.4.1 Principles

In [92, 91] the authors consider the problem of robot navigation with constraints
and rotation, introducing a third degree of freedom in two-dimensional applications.
Considering now an object with a given length and width, the problem is now to
extract a trajectory between two positions that are in configuration space the position
of the center of the object, plus an angle 6 between 0 and 27 at the beginning and at
the end of the trajectory.

The authors consider two cases, both on constant potentials:

e In the absence of obstacles, the Fast-Marching can be applied in a straightfor-
ward manner, by discretizing the configuration space into a 3D grid, namely
griding both IR? and [0; 2] with periodic boundaries in #, and solving

=

[u2 + ui +ug)? =1 (2.8)

e In the presence of obstacles, by altering the shapes of the obstacles for every
discretized angle #;, rather than maneuvering the robot. They use morpholog-
ical operations, like dilatation to alter the obstacles shapes, with a structuring
element corresponding to the robot at a given angle. A fast implementation of
these morphological operations can be found in [64].

Therefore the above path planning problem solves the Eikonal equation

1

VT|= ——
VT = 0

(2.9)

where F is binary: 1 in reachable regions and 0 inside the obstacles. As shown in [163],
there is no reason to limit ourselves to binary speed values. We may use the same
algorithm for continuously varying speed functions.

38 2 Path extraction techniques based on the Fast-Marching algorithm

In [88], they consider the problem of obstacle avoidance navigating under a po-
tential function which penalizes the free work space [100].

We worked upon the use of the Eikonal equation, including a dimension related to
the angle of an object, in order to compute trajectories of oriented objects in domains
with a weighted metric, without obstacles.

The problem has been schematized to the following:

1. We have used very simple objects, like rectangles and triangles, in two dimen-
sional media;

2. For those objects, our strategy is to discretize them in a limited number of
positions, which means that for a triangle, we only consider the value of the
potential at its vertices.

3. In order to make the objects move according to the weighted metric, staying in
the desired regions, at each position (z,y, 8), we take as potential for an object,
the maximum of the potential over all positions considered (i.e. vertices for the
triangle case).

We want to simulate the trajectory of an object, in a two dimensional medium,
with constraints on the direction of the object: there is now a cost for changing its
orientation. This result finds its application in the regularization of the point of view
of the object in the media, simulating for example the direction of a virtual camera.

2.4.2 Algorithmic tricks

The algorithm used is very similar to that of section 2.1, which means we are working
on a three dimensional problem. The following definitions are necessary:

1. The speed of the front is a function of the position, but not the orientation:
V(x,y,0) =V(z,y) ¥(z,y,0) € R* x [0; 27];

2. The action computed according to equation (2.9) is defined on IR? x [0; 27|, with
periodic boundaries in 6.

3. the griding of the interval [0; 27] used in the tests was to consider 10 discretized
angle; it can be easily implemented using an array.

2.4.3 Results

Figure 2.12 represents samples of the trajectory of a triangle, using a DSA image as
weighted metric for propagating. Obviously, the object is doing several U-turns along
the trajectory and is not suitable for the applications we want to address.

We overcome the drawback of the very simple object used in figure 2.12-left by
simply adding a branch to our triangle. This branch defines a new position for es-
timating the potential, and will constrain our object to look in the direction of the
trajectory, in linear structures, like vessels. Results of this new strategy are shown in
figure 2.12-right.

2.5 Introducing recursivity in the Eikonal equation 39

Figure 2.12. Movement of a two different objects in the medium defined
by the image on the background: Left image: the object is a triangle; the path
represents the trajectory of one of the vertices of the triangle. The constraint on the
angle of the object is not sufficient, and the object is doing several U-turns during
propagation; right image: the object is now a triangle with a branch connected at
one of its vertices; the constraint on the angle of the object is now sufficient, and
the object keeps looking in the direction of the trajectory.

2.4.4 Perspectives

Linear objects with self-intersections: in a 2D X-ray image, a linear three dimensional
structure projection can self-intersects, like a catheter in a heart image (for example
see figure 2.13). The minimal path using only the 2D spatial configuration will not
extract the loop which is created. Our method could overcome this drawback.

2.5 Introducing recursivity in the Eikonal equation

The Fast-Marching algorithm fails if the penalty is noisy, or if the objects to detect
are long thin curves, like the guide-wire shown in figure 2.14. If the offset term w and
the penalty P in Eikonal equation are not tuned efficiently, a portion of the shortest
path extracted can be a short cut to the starting point, leading to wrong results, like
in figure 2.14-left. One way to overcome this drawback is to introduce a recursivity
term in the computation in Eikonal equation : having « €]0; 1], we now compute

(max{u — aldi—1 j,u— aliy1 5, 0})* +
(max{u — a.uivj_Lk,u — a.ui7j+17k, 0})2 + (210)
(max{u — al; jr—1,u — olh; j i1, 0})? = ﬁzjk

giving the value u for U; ;. This recursive term, usually set to .9, reduces the values
of the action. This enables the front to propagate further in the direction of the thin

40 2 Path extraction techniques based on the Fast-Marching algorithm

Figure 2.13. Catheter in X-Ray image of the heart: The catheter is the
linear structures in dark that self-intersects.

Figure 2.14. Guide-wire extraction with recursive Fast-Marching : The
left image is the minimal path extraction with classical Fast-Marching ; right image
is the same result with recursive Fast-Marching .

curves, without propagating in all directions. In figure 2.14, the border of the set of
visited points is drawn in red: on figure 2.14-left the algorithm has visited more than
half the image domain, leading to a wrong path which goes straight down to the end
point; on figure 2.14-right, the corresponding domain surrounds the guide-wire, and
leads to a path that stay in the vicinity of the object.

Unfortunately, the equation(2.10) of course no more gives the solution to any
Eikonal equation computed on a penalty domain P, and the new action map U com-
puted is not convex at all. The minimal path that links the extremities is here defined
by a Ly descent on the map which stores the Fast-Marching iterations, and not with
the gradient descent on the action map. The minimality principle is lost, whereas
this algorithmic trick improves extraction. A patent has been filled on this subject
(see [54]).

